University of Leeds
SCHOOL OF COMPUTER STUDIES
RESEARCH REPORT SERIES
Report 97.27

How Not To Do It
by

Ian P Gent', Stuart A. Grant, Ewen MaclIntyre',
Patrick Prosser!, Paul Shaw', Barbara M Smith
& Toby Walsh!

May 1997

!Department of Computer Science, University of Strathclyde, Glasgow G1 1XH,
Scotland.



Abstract

We give some dos and don’ts for those analysing algorithms ex-
perimentally. We illustrate these with many examples from our own
research on the study of algorithms for NP-complete problems such as
satisfiability and constraint satisfaction. Where we have not followed
these maxims, we have suffered as a result.

1 Introduction

The empirical study of algorithms is a relatively immature field with many
technical and scientific problems. We support the calls of McGeoch (1986,1996),
Hooker (1994), and others for a more scientific approach to the empirical
study of algorithms. Our contribution in this paper is colloquial. We admit
to a large number of mistakes in conducting our research. While painful, we
hope that this will encourage others to avoid these mistakes, and thereby to
develop practices which represent good science.

Much of our research has been on the experimental analysis of algorithms
and phase transitions in NP-complete problems, most commonly in satisfia-
bility or constraint satisfaction problems. Hayes (1997) gives a non-technical
introduction to satisfiability and phase transition research, and Kumar (1992)
surveys constraint satisfaction problems.! The advice we give should be par-
ticularly appropriate for researchers in similar areas. However, we will not
assume knowledge of the research we cite, as we believe that our lessons
should be more generally valuable.

As well as McGeoch and Hooker, a number of authors give advice to those
seeking to perform computational experiments as part of their research into
algorithms. Cohen (1995) gives invaluable advice to workers in empirical
artificial intelligence, particularly in the area of experimental design and
statistical testing, although the empirical study of NP-complete problems is
not discussed. Johnson (1996) gives general advice to experimenters, while
Mitchell and Levesque (1996) give advice to those interested in the particular
domain of random satisfiability. The particular novelty of this paper is that
we own up to many mistakes that we ourselves have made. As well as avoiding
any need to be fair to the authors being criticised, it also means we are aware
of many mistakes that cannot be seen simply from reading our papers.

!More technical surveys of constraint satisfaction problems are given in articles by
Dechter (1992) and Mackworth (1992) as well as the book by Tsang (1993). Volume 81
of Artificial Intelligence is a recent source of research papers on phase transition research

[Hogg et al. 1996].



We will maintain a convention throughout: we hold all authors of a joint
paper equally responsible for any mistake that one of them may have made.
In what follows, the context will usually make clear that we are referring to
a particular paper. Where we write ‘I’ or ‘we’, this should be taken to mean
the author or all the authors of the relevant paper.

2 Getting Started

Suppose you have selected an algorithm that you wish to investigate experi-
mentally. Typically you will end up writing your own implementation of this
algorithm, either because it is new, or because you are interested in features
of the algorithm you cannot investigate using publicly available code. Of the
many lessons we have learnt about getting started, here are some of the most
important.
DON’T TRUST YOURSELF
Bugs always find their way into the most harmful parts of your code. Hav-
ing implemented the algorithm GSAT, a local search procedure for sat-
isfiability [Selman et al. 1992], and written a version of a research paper
[Gent and Walsh 1992], we discovered a bug in one of the most frequently
called subroutines which biased the picking of a random element from a set.
We noticed this bug when we observed very different performance running
the same code on two different continents (from this we learnt, DO USE DIF-
FERENT HARDWARE). All our experiments were flawed and had to be rerun.
Curiously one version of the bugged code gave better performance than the
correct code. This suggests a hypothesis, which we have still to investigate
fully, that systematic bias in GSAT’s search may improve performance. In
an attempt to prevent this happening again, we advocate a strategy of cod-
ing due to Boyer and Moore. That is, every line of code should be read and
approved of by an independent source. Sometimes we even do this.
DO MAKE IT FAST ENOUGH

Surprisingly, it is not always necessary to have optimal code. But it does
have to be fast enough. For example, our initial implementation of GSAT
had an update time between moves so large as to make it practically use-
less. For standard problem sets, we eventually reduced this by the square
of the number of variables in the problem, and how to do this was known
at the time we wrote our code. It was a year before we got to this point,
having reinvented several wheels. (Suggesting the advice DO REPORT IM-
PORTANT IMPLEMENTATION DETAILS, though it is very hard to follow this
in papers with tight page limits.) In the meantime we had published results
about GSAT [Gent and Walsh 1993a, Gent and Walsh 1993b] using code of



intermediate efficiency. Your code has got to be fast enough to do what you
need: it need not be the fastest in the world. Occasionally we have inadver-
tently gone too far in this direction. For example, when studying the scaling
of search cost [Gent et al. 1997] we accidentally ran interpreted rather than
compiled Lisp, for a fifty-fold slowdown. So DO COMPILE CODE.
DO USE VERSION CONTROL

The software systems we use to conduct our empirical studies are inevitably
large and complex. A typical experimental system might be made up of
fifteen or more program modules. These modules are constantly evolving,
thanks to the addition of new algorithms and methods of problem generation.
Especially for versions of software used to produce published results, we
suggest that you DO PRESERVE YOUR SOFTWARE. But we have found to
our cost that doing this on an ad hoc basis can lead to the recurrence of
old faults. In reporting the values of a constrainedness parameter, xk, we
miscalculated values by a few percent, but did not notice it until the report
had been published [Grant and Smith 1996]. The cause was a crass error
involving a defective for loop. This error had been spotted and fixed once,
but had reappeared. Some other modifications to the relevant module had
been attempted at the same time as the bug-fix. When these were abandoned,
the previous version of this module was recalled, and the error re-introduced.
Although the underlying data was unaffected, principled use of a source
control system such as RCS or SCCS [Bolinger and Bronson 1995] would
have prevented the problem recurring at all.

3 Experimental Design

Once you have played with your debugged code, you may notice interesting
behaviour, or implement interesting variants of the algorithm. From this,
you may form various hypotheses about the algorithm’s performance. In
devising experiments to test such hypotheses, we have made many mistakes.
DO MEASURE WITH MANY INSTRUMENTS
Is it wise to only use one instrument to take measurements? A study of bi-
nary constraint satisfaction problems (CSPs) focussed on the nature of the
phase transition, the crossover point, and the complexity peak [Prosser 1996].
In our eagerness we decided that we needed to look at many problems, us-
ing large sample sizes and varying as many problem parameters as possi-
ble. To do this we naturally used our best and fastest algorithm. FKssen-
tially, the algorithm was used as an instrument to take measures of char-
acteristics of the problems. At that time Tad Hogg told us he had seen
some unusual behaviour, namely hard problems where they were least ex-



pected. But we did not, no matter how hard we tried. The algorithms
were different; Tad used a chronological backtracker, and we used a back-
jumper. Tad observed what later became known as exceptionally hard prob-
lems [Hogg and Williams 1994], something that is very difficult to find with
smart backjumping. Our own observation of exceptionally hard constraint
satisfaction problems was delayed by some time.
DO VARY ALL RELEVANT FACTORS
We have reported on many series of experiments using the forward checking
algorithm. It is well-known that the smallest-domain-first variable ordering
heuristic [Haralick and Elliott 1980] gives good results for random CSPs, so
we used this heuristic. Eventually we carried out some experiments using a
static, random, variable ordering, and found that some of the effects we had
reported were due to the heuristic rather than to the algorithm. For instance,
we claimed that forward checking does not suffer from such exceptionally
hard problems when the constraint density is high [Smith and Grant 1995a].
Later experiments showed that this is only when using the smallest-domain-
first heuristic. We realised that we should vary both the heuristic and the
algorithm in this kind of experiment only after carrying out a new series of
experiments comparing forward checking with simple backtracking. It was
only when we were some way into the experiments, and after some results had
already appeared in print [Smith and Grant 1995b], that we started using
forward checking with the same static variable ordering as the backtracking
algorithm. We had, in fact, broken another rule (DON’T CHANGE TWO
THINGS AT ONCE): some of the effects we had previously seen were due
to the change in algorithm, and some to the change in variable ordering
heuristic.
DO MEASURE CPU TIME

Using CPU time as a measure of performance is often looked down upon,
rightly, as it can lead to unproductive efficiency wars between researchers
[Hooker 1995]. However, comparing CPU times within different versions of
your own code can be very valuable. This came to light in (unpublished) ex-
periments on variable ordering heuristics for the CSP. We were using various
heuristics, one a complex version of a simple heuristic with a complex (and
computationally very expensive) tie-breaking rule added. During search,
evaluation of the tie-breaking rule alone used three to five times as many
consistency checks as the search using the simple heuristic. Using total con-
sistency checks as the sole measure of performance turned out to be a bad
idea, since in many cases, and especially on the hardest instances, CPU time
was reduced. It turned out that the code in which the heuristic was evaluated
was very simple and needed to do less additional work per consistency check
than the main search. To find this out we had to rerun our experiments,

4



measuring CPU time.

DO COLLECT ALL DATA POSSIBLE
Usually, there are several obvious statistics to collect as well as CPU time.
For example, for backtracking procedures there is the number of branches
searched while for local search procedures there is the number of moves
made. However, you should collect as many meaningful aspects of data
as you can think of. For a long time, we did not record the number of
branching points for backtracking procedures, a statistic subtly different
from the number of branches. In investigating the satisfiability constraint
gap [Gent and Walsh 1996], the most meaningful statistic turned out to be
the ratio of constraint propagations to branching points. We therefore had to
rerun many experiments. To have produced this data in the first place would
have involved almost no extra expense. It pays to collect everything you can
think of, whether or not you expect it to be important. When rerunning
these experiments, we collected for the first time the minimal search depth,
and this also turned out to be a very important statistic.

DO BE PARANOID
How do you know your instruments are working correctly? What hope is
there for independent calibration when we are applying algorithms that we
have invented to problems that we have randomly generated? One way round
this is to replicate experiments independently. We often encode CSP algo-
rithms [Prosser 1993b] in Scheme initially and then in C, often doing this at
different sites. We can then replicate large scale experiments, and also look
in detail at specific instances to make sure that we are obtaining identical
results. Inevitably, apparently minor implementation details influence be-
haviour. For example, we encoded in Scheme (once) and C (twice) forward
checking with conflict-directed backjumping using the smallest-domain-first
heuristic. All three implementations gave different behaviour. We had not
agreed what to do when many variables had the same heuristic value, i.e. in
tie breaking situations. One of us took the first variable with best heuristic
value, another the last variable, and one chose at random. While this did not
make a significant difference on average, when we were examining an individ-
ual problem we got different results. Naturally our confidence went out the
window. Enter the ‘paranoid flag.” We now have two modes of running our
experiments, one with the paranoid flag on. In this mode, we put efficiency
aside and make sure that the algorithms and their heuristics do exactly the
same thing, as far as we can tell.

DO CHECK YOUR SOLUTIONS
A feature of NP-complete problems is the ability to verify any solution within
polynomial time. A sensible and inexpensive security device is therefore to
check every solution produced.



DO IT ALL AGAIN
Or at least, be able to do it all again. Reproducibility should always be an
important aim. Even if different random number generators preclude other
researchers literally duplicating your results, you should be able to run the
same experiment on the same seeds if necessary. Keeping random seeds has a
second great benefit. Testing different procedures on identical problems, not
merely problems generated in the same way, greatly reduces the variance in
the difference in performance of the two procedures, and makes it much easier
to obtain statistically significant results (DO USE THE SAME PROBLEMS). We
have tried to do this as much as possible, but occasionally our own stupidity
has got the better of us. When a process going through a supposedly easy
problem class had not written to the file for several hours, we thought the
program had crashed so we killed the job and deleted the file. Fortunately,
the next day the same thing happened with some new data, and we realised
that some problems were remarkably difficult in this otherwise easy problem
class [Gent and Walsh 1994a]. If the behaviour had been slightly rarer, we
might have never seen it again, and would not have been able to go back to
the original hard problem (DON’T IGNORE CRASHES).

DO IT OFTEN AND DO IT BIG
One reason for making your code efficient (DO MAKE IT FAST ENOUGH) is so
that you can perform lots of experiments on large problems. This is impor-
tant since emergent behaviour is often not apparent with small problems. In
addition, running lots of experiments will reduce noise and may uncover rare
but important hard cases. For example, we ran many experiments on random
3-SAT looking for bad worst case performance [Gent and Walsh 1994a]. We
tried many different backtracking procedures at many different problem sizes
using experiments with 1000 randomly generated problems per data point.
We found nothing. So we tried again with 10,000 randomly generated prob-
lems at each data point. We still found nothing. With other problem classes,
we had had no difficulty in finding bad worst case performance using just 1000
randomly generated problems. Persistence eventually paid off. In a month
long experiment with 100,000 randomly generated problems at each data
point, we finally observed bad worst case performance. Sometimes getting
an interesting result requires a lot of perspiration and very little inspiration.

DON’T KILL YOUR MACHINES
Our previous piece of advice needs to be treated with some care. Because of
the exponential nature of search algorithms for NP problems, it is very easy
for a small misjudgement in experimental parameters to result in experiments
that will take a very long time. When using shared resources such as CPU
cycles donated from other projects, the temptation is to use more than your
fair share to finish the experiment. As a result we have sometimes run into



trouble with colleagues or system administrators. The irony is that it is often
on just these occasions that the results were unimportant anyway. This
is particularly true where scaling methods such as ‘finite-size scaling’ are
available, enabling results from smaller sizes to be extrapolated accurately
[Gent et al. 1997]. So DO LOOK FOR SCALING RESULTS. They can often be
found from data involving surprisingly small problem sizes and samples.
Do BE STUPID

Apparently stupid experiments can sometimes give fascinating results. For
example, one of the fundamental features of GSAT is the greediness of its
hill-climbing. Through perversity, we implemented a variant which was not
greedy but indifferent to upwards or sideways moves [Gent and Walsh 1993b)].
We did not expect this variant to perform at all well. To our surprise, its
performance was similar to GSAT. Indeed it was even able to outperform
GSAT when combined with a tabu-like restriction. Such chance discoveries
help us understand the nature of GSAT’s hill-climbing and will, we expect,
guide future theoretical analyses. There is, however, a limit to stupidity.
We also implemented a variant of GSAT which didn’t even bother with the
hill-climbing. Of course, this was stupid and ran very poorly.

4 Problems with Random Problems

Following Cheeseman, Kanefsky & Taylor (1991) and Mitchell, Selman &
Levesque (1992) , many authors have performed many experiments on ran-
domly generated problems: or rather pseudo-randomly generated problems.
The use and misuse of pseudo-random number generators has led us into
many problems.
DON’T TRUST YOUR SOURCE OF RANDOM NUMBERS

Although problems with the low bits of the standard C library rand() are
well known, any random number generator can cause you problems, includ-
ing the rather better random(). At one stage, we modified code which had
been previously used to generate results for a publication [Gent et al. 1995].
The change meant that constraints or conflicts could be added to each prob-
lem in a given sample, but without affecting the next problem. This was
done by repeatedly re-seeding the random number generator before gener-
ating each constraint, thus using many short streams of random numbers
rather than one long stream. This in turn interacted with the way random
numbers from random() were used. In general this interaction does not seem
to have affected results, but when performing new experiments on the ran-
dom n-queens problem [Gaschnig 1979] we observed anomalous behaviour on
a board of size 16. Extensive investigations eventually showed that the com-



bination of using a power of 2 and short streams of random numbers from
random() had led to a significant bias in the way problems were generated.
The problem only arose because we took the random number modulus the
board size, so we were simply examining the lowest four bits. The result was
problems where the frequency of conflicts occurring with certain combina-
tions of values could be systematically higher than others. So the problems
were not truly random. One general lesson is clear: DO CHECK CHANGES
MADE TO CORE CODE.

DO UNDERSTAND YOUR PROBLEM GENERATOR
Assuming your random numbers are sound, there are many pitfalls on the way
to generating random problems, to the extent that you can even fail to gen-
erate any problems at all. For many applications, where we seek a subset of
problems with a certain property, it is appropriate to use a ‘generate-and-test’
method. To do otherwise might lead to subtle biases you are not aware of.
For example, in investigating bin-packing problems [Gent and Walsh 1997]
we generated bags of numbers and discarded those with a sum outside a cer-
tain range. We then proceeded to waste hundreds of hours of CPU time over
a holiday. We had asked some machines to use this generator with a set of
parameters which make it impossible ever to generate a valid problem.

DO CHECK YOUR HEALTH REGULARLY
An even more elementary mistake shows up a general lesson: that wherever
possible you should check your results against those published by others. A
few days before submitting a paper to a conference [Gent et al. 1995], we
realised that our data was entirely inconsistent with some reported by Frost
& Dechter (1994) . We quickly realised the cause: when we sought to obtain
3 conflicts out of a possible 9, our generator took the integer part of the
floating point calculation 9 x (3/9) =9 x 0.333... = 2.999... and obtained
2. Ironically, every line of every result file contained the correct conflict
density of 0.222. .., showing that we had not looked at our raw data.

DO CONTROL SOURCES OF VARIATION
Chance features of randomly generated problems can obscure the features of
the problem you are trying to control. For example, when generating satisfia-
bility problems from the ‘constant probability model’” we allowed tautologies
to occur [Gent and Walsh 1994a]. A clause which is a tautology is irrelevant,
so a 100 clause problem with 50 tautologies is really a 50 clause problem. So
in effect we have lost control of the number of clauses the problem contains.
Fortunately in our experiments the number of tautologies was never large and
so the effect was negligible. A similar issue arose in experimenting on random
binary CSPs, in a model containing the parameter py; indicating the aver-
age number of conflicts per constraint [Prosser 1996, Smith and Dyer 1996].
In each constraint we include exactly p, times the total possible number of



conflicts: if we included each conflict with probability p, then the number
of conflicts in each constraint would vary outside our control. Controlling
sources of variation is not the same as eliminating them. We later wished to
experiment on non-uniform problems in which p, varies within a problem. To
do this we designed a random problem generator to allow for this explicitly
and under our control [Gent et al. 1996].

5 Analysis of Data

Having run your computational experiments, you are now in a position to
analyse the data. Somewhat surprisingly, it is often quite hard to determine
the actual outcome of the experiments. One reason is the mega-bytes of data
generated. Here are some of the lessons we have learnt in sifting through such
mountains of data.

DO LOOK AT THE RAW DATA
Summaries of the data inevitably present an approximate view. By looking
at the raw data, you can often spot trends, and interesting odd cases which
are hidden in the summaries. For example, we couldn’t miss the worst case
problem that needed a week of CPU whilst most other problems in the region
took seconds [Gent and Walsh 1994a]. However, we had failed to see this
effect at smaller problem sizes. Although our experiments had come across
other such problems, orders of magnitude harder than the typical problems
in that region, graphs of median behaviour gave no hint of their existence.
At best, graphs of mean behaviour for smaller problem sizes only showed
more noise within this region.

DO LOOK FOR GOOD VIEWS
Almost all the insights we have had into the behaviour of our algorithms have
come from finding a good view of the data. For example, for hill-climbing
procedures like GSAT, we tried plotting the number of unsatisfied clauses
(the “score”) against the number of moves performed. Such graphs were not
very illuminating. We therefore looked for a better view. We tried many
possibilities before arriving at a simultaneous plot of the number of variables
offered at each flip and the derivative of the score. ;From this, we were able
to see clearly the very different stages in the search [Gent and Walsh 1993a].
Sometimes an experiment will suggest a good view of old data. It’s important
therefore not to throw away data (DON’T DISCARD DATA).

DO FACE UP TO THE CONSEQUENCES OF YOUR RESULTS
In testing out a new algorithm, which we expected to reduce search, we found
2 cases out of 450 where it increased search. The obvious explanation for this
was bugged code. We re-coded the algorithm from scratch, but got the same



results. We couldn’t understand it, and thought that we should just forget
the algorithm once and for all. But sometimes it’s not easy to forget. We
resorted to a detailed analysis of the two problems, tracing every feature of
the algorithm as it progressed through the search space. A visual analysis
took days, and resulted in an explanation of the phenomenon and an ability
to replicate it [Prosser 1993a].
DON’T REJECT THE OBVIOUS

Several times we have looked at some result and rejected — or not considered
— an obvious interpretation. For example, we plotted graphs of the score
for GSAT decaying with the number of moves performed, but did not con-
sider the obvious possibility of exponential decay. This would have been too
simple for such a complex system. Several weeks later, with the aid of a
statistics package, we discovered it was indeed a simple exponential decay
[Gent and Walsh 1993a]. It would, however, have only taken a quick log plot
to have found this out.

6 Presentation of Results

Having found a good view of the data which supports or rejects your hy-
potheses, you now will want to present your results to a wider audience.
There are still many mistakes to make.
DO PRESENT STATISTICS
All too often, we have presented our results by simple tables of mean per-
formance. With experience, we have learnt that even the very simplest of
statistics can provide considerably more information, giving your audience
some feel for the spread of values or the accuracy of a fit. When we have
presented talks without this data, it has on occasion frustrated audiences
considerably. As a matter of course, we advise giving the minimum, mean,
maximum, median and standard deviation. Such statistics are easy to com-
pute, yet give a much more complete picture.
DO REPORT NEGATIVE RESULTS

It is tempting just to report your successes. This should be resisted at
all costs. Reporting negative results can be just as valuable as reporting
positive results. You will save other people wasting time on dead-ends.
For example, we reported that adding memory of where you had previ-
ously been in the search space did not significantly improve the perfor-
mance of GSAT [Gent and Walsh 1993b]. It was not an exciting result but
it does save others from exploring that fruitless avenue. Negative results
may also suggest important new hypotheses. For example, we reported in
one short paragraph our inability to observe with GSAT the very variable

10



behaviour seen with backtracking procedures in mostly satisfiable regions
[Gent and Walsh 1994b]. We are happy to applaud Davenport (1995) for re-
porting more detailed results, also failing to find any such behaviour. We do
not know if exceptionally hard problems do not occur, or if they just occur
less frequently or with larger problem sizes.

DON’T PUSH DEADLINES
A deadline does, as Dr Johnson said, concentrate the mind wonderfully.
Experiments we report in most of our papers have been run in the last two
weeks before a deadline, because we find in writing a first draft that the
experimental data we have is incomplete or does not cover all the cases we
need. To date, we have very rarely succeeded in following this advice, and
have learnt from it only to the extent of giving ourselves deadlines where
none is imposed from outside.

DO CHECK YOUR REFERENCES
This advice is easily given but harder to follow. For example, in an earlier
version of this very paper [Gent and Walsh 1994c], we gave the incorrect page
numbers for a classic in our field. This was because, to our shame, we had
cribbed the reference from another paper rather than the source itself.

7 Conclusions

We have presented some of the lessons we have learnt in studying NP-
complete problems experimentally. With hindsight, most of these lessons
now seem obvious. Indeed, most of them are obvious. However, this did not
stop us making many mistakes along the way. Perhaps the use of appropri-
ate quality assurance techniques would have prevented them occurring. We
should stress that this list of lessons is far from comprehensive. It was not
intended to be. There are still many mistakes for us to make in the future.
To distort a famous saying, those unable to learn from their mistakes are
destined to repeat them. We therefore hope you can benefit a little from our
mistakes and stupidity.

Acknowledgements

We thank our colleagues in the APES Research Group, of which the authors
are all members, especially Philip Kilby for particularly helpful comments.

We wish to thank the various funding bodies that have supported our
research over the years, and the various colleagues we have discussed our
work with. Our mistakes, however, remain our own.

11



References

[Bolinger and Bronson 1995] D. Bolinger and T. Bronson. 1995. Applying
RCS and SCCS. O’Reilly & Associates.

[Cheeseman et al. 1991] P. Cheeseman, B. Kanefsky and W. Taylor. 1991.
Where the really hard problems are. In Proceedings of the 12th IJCAI,
331-337.

[Cohen 1995] P. Cohen. 1995. Empirical methods for Artificial Intelligence.
MIT Press.

[Davenport 1995] A. Davenport. 1995. A comparison of complete and incom-
plete algorithms in the easy and hard regions. In Proceedings, Workshop
on Studying and Solving Really Hard Problems, C'P-95, 43-51.

[Dechter 1992] R. Dechter. 1992. Constraint networks. In Encyclopedia of
Artificial Intelligence, 276-286. Wiley. 2nd Edition.

[Frost and Dechter 1994] D. Frost and R. Dechter. 1994. In search of the
best search: an empirical evaluation. In Proceedings AAAI-94, 301-306.

[Gaschnig 1979] J. Gaschnig. 1979. Performance measurement and analysis
of certain search algorithms. Technical report CMU-C5-79-124, Carnegie-
Mellon University.

[Gent and Walsh 1992] I. Gent and T. Walsh. 1992. The enigma of SAT hill-
climbing procedures. Research Paper 605, Dept. of Artificial Intelligence,
University of Edinburgh.

ent an als al 1. P. Gent an . Walsh. a. An empirical anal-
(G d Walsh 1993a] 1. P. G d T. Walsh. 1993a. A pirical anal
ysis of search in GSAT. Journal of Artificial Intelligence Research 1:47-59.

[Gent and Walsh 1993b] 1. P. Gent and T. Walsh. 1993b. Towards an under-
standing of hill-climbing procedures for SAT. In Proceedings of AAAI-93,
28-33.

[Gent and Walsh 1994a] I. Gent and T. Walsh. 1994a. Easy problems are
sometimes hard. Artificial Intelligence 335-345.

[Gent and Walsh 1994b] 1. Gent and T. Walsh. 1994b. The hardest ran-
dom SAT problems. In B. Nebel and L. Dreschler-Fischer., eds., KI-94:
Advances in Artificial Intelligence. 18th German Annual Conference on

Artificial Intelligence, 355-366. Springer-Verlag.

12



[Gent and Walsh 1994¢] 1. Gent and T. Walsh. 1994c. How not to do it.
Research Paper 714, Dept. of Artificial Intelligence, Edinburgh.

[Gent and Walsh 1996] I. Gent and T. Walsh. 1996. The satisfiability con-
straint gap. Artificial Intelligence 81:59-80.

[Gent and Walsh 1997] I. Gent and T. Walsh. 1997. From approximate
to optimal solutions: Constructing pruning and propagation rules. In

Proceedings of IJCAT 97. In press.

[Gent et al. 1995] 1. Gent, E. Maclntyre, P. Prosser and T. Walsh. 1995.
Scaling effects in the CSP phase transition. In Principles and Practice of
Constraint Programming, 70-87. Springer.

[Gent et al. 1996] 1. Gent, E. Maclntyre, P. Prosser, B. Smith and T. Walsh.
1996. An empirical study of dynamic variable ordering heuristics for
the constraint satisfaction problem. In Proceedings of CP-96, 179-193.
Springer.

[Gent et al. 1997] 1. Gent, E. Maclntyre, P. Prosser and T. Walsh. 1997.
The scaling of search cost. In Proceedings of AAAI-97, to appear.

[Grant and Smith 1996] S. Grant and B. Smith. 1996. The arc and path con-
sistency phase transitions. Report 96.09, Research Report Series, School
of Computer Studies, University of Leeds.

[Haralick and Elliott 1980] R. Haralick and G. Elliott. 1980. Increasing tree
search efficiency for constraint satisfaction problems. Artificial Intelligence

14:263-313.

[Hayes 1997] B. Hayes. 1997. Can’t get no satisfaction. American Scientist
85:108-112.

[Hogg and Williams 1994] T. Hogg and C. Williams. 1994. The hardest
constraint problems: A double phase transition. Artificial Intelligence

69:359-377.

[Hogg et al. 1996] T. Hogg, B. Huberman and C. Williams., eds. 1996. Ar-
tificial Intelligence, volume 81. Elsevier. Special Volume on Frontiers in
Problem Solving: Phase Transitions and Complexity.

[Hooker 1994] J. N. Hooker. 1994. Needed: An empirical science of algo-
rithms. Operations Research 42:201-212.

13



[Hooker 1995] J. N. Hooker. 1995. Testing heuristics: We have it all wrong.
Journal of Heuristics 1:33—42.

[Johnson 1996] D. S. Johnson. 1996. A theoretician’s guide to the exper-
imental analysis of algorithms. Invited talk at AAAI-96. Partial draft
available at http://www.research.att.com/"dsj/papers/exper.ps.

[Kumar 1992] V. Kumar. 1992. Algorithms for constraint satisfaction prob-
lems: a survey. Al Magazine 13:32-44.

[McGeoch 1986] C. McGeoch. 1986. FEaxperimental Analysis of Algorithms.
Ph.D. Dissertation, Carnegie Mellon University. Also available as CMU-
CS-87-124.

[McGeoch 1996] C. McGeoch. 1996. Toward an experimental method for
algorithm simulation. INFORMS Journal on Computing 8:1-15.

[Mitchell and Levesque 1996] D. G. Mitchell and H. J. Levesque. 1996. Some
pitfalls for experimenters with random SAT. Artificial Intelligence 81:111—
125.

[Mitchell et al. 1992] D. Mitchell, B. Selman and H. Levesque. 1992. Hard
and easy distributions of SAT problems. In Proceedings, 10th National
Conference on Artificial Intelligence, 459-465. AAAI Press/The MIT

Press.

[Prosser 1993a] P. Prosser. 1993a. Domain filtering can degrade intelligent
backtracking search. In Proceedings of IJCAI-93, 262-267.

[Prosser 1993b] P. Prosser. 1993b. Hybrid algorithms for the constraint
satisfaction problem. Computational Intelligence 9:268-299.

[Prosser 1996] P. Prosser. 1996. An empirical study of phase transitions in
binary constraint satisfaction problems. Artificial Intelligence 81:127-154.

[Selman et al. 1992] B. Selman, H. Levesque and D. Mitchell. 1992. A new
method for solving hard satisfiability problems. In Proceedings of AAAI-
92, 440-446.

[Smith and Dyer 1996] B. Smith and M. Dyer. 1996. Locating the phase
transition in binary constraint satisfaction problems. Artificial Intelligence

81:155-181.

14



mith an rant a| B. Smith and 5. Grant. a. arse constraint

[Smith and G 1995a] B. Smith and S. G 1995a. Sp i
graphs and exceptionally hard problems. In Proceedings of IJCAI-95, 646—
651.

[Smith and Grant 1995b] B. Smith and S. Grant. 1995b. Where the excep-
tionally hard problems are. Report 95.35, Research Report Series, School
of Computer Studies, University of Leeds.

[Tsang 1993] E. Tsang. 1993. Foundations of Constraint Satisfaction. Aca-

demic Press.

15



